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Venomous marine cone snails produce peptide toxins (cono-
toxins) that bind ion channels and receptors with high specific-
ity and therefore are important pharmacological tools. Cono-
toxins contain conserved cysteine residues that form disulfide
bonds that stabilize their structures. To gain structural insight
into the large, yet poorly characterized conotoxin H-superfam-
ily, we used NMR and CD spectroscopy along with MS-based
analyses to investigate H-Vc7.2 from Conus victoriae, a peptide
with a VI/VII cysteine framework. This framework has CysI–
CysIV/CysII–CysV/CysIII–CysVI connectivities, which have in-
variably been associated with the inhibitor cystine knot (ICK)
fold. However, the solution structure of recombinantly ex-
pressed and purified H-Vc7.2 revealed that although it displays
the expected cysteine connectivities, H-Vc7.2 adopts a different
fold consisting of two stacked �-hairpins with opposing
�-strands connected by two parallel disulfide bonds, a structure
homologous to the N-terminal region of the human granulin
protein. Using structural comparisons, we subsequently identi-
fied several toxins and nontoxin proteins with this “mini-granu-
lin” fold. These findings raise fundamental questions concern-
ing sequence–structure relationships within peptides and
proteins and the key determinants that specify a given fold.

Venoms from a variety of animals such as snakes, spiders,
scorpions, and marine snails contain diverse peptide toxins that

bind with high specificity and affinity to their molecular targets.
These characteristic features make venom peptide toxins
potentially valuable pharmacological tools and drug leads (1).
One toxin from a predatory marine cone snail, �-MVIIA from
Conus magus, is a Food and Drug Administration–approved
drug (with the commercial name Prialt) used to treat severe and
chronic pain (2), and several other conotoxins are in develop-
ment for various pathologies, including pain, epilepsy, stroke,
and diabetes (3–6). In addition, many venom peptides are used
as affinity reagents and constitute valuable research tools.

Each of the �800 species of cone snails of the genus Conus
produces a unique set of 100 – 400 venom peptides that are
typically referred to as conotoxins or conopeptides. Conotoxins
are ribosomally synthesized as preproproteins, containing a
conserved signal sequence for endoplasmic reticulum (ER)4

localization, a propeptide region, and the C-terminal mature
toxin that is released upon proteolytic removal of the propep-
tide. Conotoxins can be divided into gene superfamilies based
on their conserved signal sequence (7, 8). To date, more than 53
gene superfamilies have been described in this genus (9). The
peptide investigated in this study, H-Vc7.2, was first identified
by transcriptome sequencing of the venom gland of Conus vic-
toriae (10) and belongs to the H-superfamily of conotoxins.

Mature conotoxins display highly variable amino acid
sequences at nearly all positions apart from the conserved cys-
teine residues that define their cysteine framework (11). Pres-
ently, the reported conotoxin sequences are divided into 26
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mon cysteine frameworks, VI/VII, where the six cysteines are
arranged in a C–C–CC–C–C pattern. Within this framework,
disulfides are predicted to connect CysI with CysIV, CysII with
CysV, and CysIII with CysVI. To date, this cysteine framework
has only been observed to give rise to the inhibitor cystine knot
(ICK) fold (also known as the “knottin” fold (12, 13)). This fold
is a common structural motif found in many animal toxins,
where a ring formed by two disulfide bonds (CysI–CysIV and
CysII–CysV) and the intervening polypeptide backbone is
threaded by the third disulfide (CysIII–CysVI) (12). The ICK fold
is found in toxins of many different venomous species, such as
cone snails, spiders, scorpions, centipedes and anemones, as
well as in plants and viruses (14).

The application of next-generation sequencing technology
to generate venom-gland transcriptomes has revolutionized
venom peptide discovery (15) and led to a massive increase in
the number of venom–peptide sequences reported, including
many new classes of venom peptides. Accordingly, there are
several newly described conotoxin gene families for which the
structure and biological activity remain unknown (7). To gain a
better understanding of the recently reported H-superfamily,
we investigated H-Vc7.2 from C. victoriae and present the first
3D structure of a peptide from this superfamily. To generate
sufficient material, we utilized a previously developed Esche-
richia coli expression system (CyDisCo) designed to produce
disulfide-containing proteins (16, 17), modified here to include
co-expression with a conotoxin foldase (conotoxin-specific
protein-disulfide isomerase, csPDI) from Conus geographus
(18). Using this system, fully oxidized H-Vc7.2 was recov-
ered from the soluble fraction and purified for biophysical
analysis. The solution structure of H-Vc7.2 determined by
NMR spectroscopy unexpectedly showed that the peptide
adopts a mini-granulin fold rather than an ICK fold. We
identify the mini-granulin fold in a variety of proteins, indi-
cating that it is more widespread than previously appreci-
ated, and we discuss the implications of our work for
sequence–structure relationships.

Results

Native H-Vc7.2 is devoid of post-translational modifications

Previous analyses of the venom gland transcriptome of
C. victoriae revealed the uncharacterized conotoxin H-super-
family, from which three transcripts were identified (10). By
searching high-resolution MS/MS spectra of reduced and alky-
lated C. victoriae venom against the translated venom gland
transcriptome, the mature form of the H-Vc7.2 conotoxin was
identified. H-Vc7.2 exists in the venom as a 25-amino acid–
residue peptide with its six cysteine residues arranged in the
type VI/VII framework (C–C–CC–C–C) (Fig. 1). No variants of
H-Vc7.2, e.g. post-translationally-modified, or peptides of dif-
ferent chain length were detected.

H-Vc7.2 expressed in E. coli purifies as a single major species

Disulfide-containing proteins can be expressed in the oxi-
dized state in the cytosol of E. coli using the CyDisCo system
(16, 17), which can produce highly complex disulfide-bonded
proteins (16, 19). In this system, the protein of interest is co-ex-
pressed with two redox enzymes, the mitochondrial oxidase
Erv1p from Saccharomyces cerevisiae and human PDI. Erv1p
provides the oxidizing equivalents to generate disulfide bonds
de novo, whereas PDI isomerizes non-native disulfides. In con-
trast to the commonly used Shuffle and Origami cells, where
the reducing pathways present in the cytoplasm are disrupted,
the CyDisCo system thus uses an active enzyme system to make
disulfide bonds. Published comparisons of CyDisCo versus Ori-
gami show the former system to be more efficient for the pro-
teins investigated (16). Moreover, the CyDisCo system is highly
versatile in the sense that it works in any strain and in any media
tested to date.5

We modified the original CyDisCo system for targeted
expression of conotoxins by co-expressing, in addition to
human PDI and Erv1p, a conotoxin-specific PDI (Fig. 2A) (18).
In previous work (18), we have shown that in vitro this csPDI

5 L. Ruddock, University of Oulu, Finland, personal communication.

Figure 1. H-Vc7.2 is a 25-residue conotoxin devoid of post-translational modifications. Top, b/y ladder diagram summarizing observed b- and y-ions
within the amino acid sequence of H-Vc7.2. Bottom, MS/MS spectrum of H-Vc7.2 in the reduced and alkylated venom of C. victoriae. *, internal fragment ions.
Inset, H-Vc7.2 [M � 5H]5� precursor ion selected for MS/MS had monoisotopic m/z of 627.46 (z � 5, predicted m/z 627.46).
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enzyme greatly accelerates the generation of correctly folded
conotoxins during oxidative folding. Therefore, we reasoned
that co-expressing the csPDI may help improve expression lev-
els of some conotoxins.

Recombinant H-Vc7.2 was expressed as a fusion protein with
an N-terminal ubiquitin (Ub)-tag containing 10 consecutive
histidines (Ub–His10) followed by a TEV protease recognition
site (Fig. 2B) (20). Upon TEV cleavage, this recombinant
H-Vc7.2 peptide contains four additional N-terminal amino
acid residues, Gly–Ala–Met–Gly (GAMG), as compared with
the native peptide because of the cloning procedure used. This
N-terminally extended 29-residue recombinant peptide is
hereafter referred to as NextH-Vc7.2, and was used for determi-
nation of the cysteine connectivity and structural analysis
by NMR spectroscopy. For CD spectroscopy, comparison of
reversed-phase HPLC (RP-HPLC) retention time with C. victo-
riae venom and bioactivity studies during this work, we also
generated recombinant H-Vc7.2 (named rH-Vc7.2) devoid
of the four N-terminal nonnative residues. All numbering
throughout this study refers to the extended peptide, except for
Fig. 1 where the numbering refers to the native sequence.

Overnight induction with IPTG resulted in clearly visible
bands for hPDI and csPDI (that co-migrated by SDS-PAGE),

Erv1p, and Ub–His10–NextH-Vc7.2 (Fig. 2C). Moreover, the
majority of Ub–His10–NextH-Vc7.2 was found in the soluble
fraction. NextH-Vc7.2 was purified as outlined in Fig. S1A. The
His10-tagged fusion protein was purified from crude lysate by
metal-affinity chromatography (Fig. S1B). Upon TEV protease
cleavage, uncleaved fusion protein, His6–TEV protease, and the
liberated Ub–His10-tag were removed by batch purification on
cobalt resin, and the peptide was further purified by RP-HPLC.
The obtained chromatogram (Fig. 2D) showed a major peak as
well as smaller peaks with increased retention time. The fraction
representing the major peak was collected as indicated in Fig. 2D
and lyophilized. A small amount of the lyophilized product was
re-analyzed, and the resulting chromatogram indicated a high
purity of the peptide (Fig. 2E). MALDI-TOF MS was used to con-
firm full oxidation of the recombinant peptide (Fig. S2). The only
assigned 13C� chemical shift, the one belonging to Cys-23, also
strongly supported its involvement in disulfide-bond formation
with a C� chemical shift value of 39.1 ppm (21).

Cysteines in NextH-Vc7.2 are connected in a CysI–CysIV,
CysII–CysV, and CysIII–CysVI arrangement

To determine the cysteine connectivity in NextH-Vc7.2, we
used sequential reduction and alkylation followed by mass
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spectrometric analyses as described recently (22). To suppress
the risk of disulfide scrambling, reduction and alkylation steps
were performed at low pH using a large molar excess of alkylat-
ing agent and with the peptide adsorbed to a solid phase, which
further minimizes disulfide reconnection because of the
restrained conformational freedom of the peptide. The sequen-
tial reduction and alkylation were performed with different
maleimides resulting in samples where the cysteines of the indi-
vidual disulfide bridges have distinct alkylation patterns. This
approach allows unambiguous identification of the cysteine
connectivity. In total, four different alkylation patterns with
N-methylmaleimide (NMM), N-ethylmaleimide (NEM), and
N-cyclohexylmaleimide (NCM) were obtained for NextH-
Vc7.2. All alkylation patterns were compatible with a single
cysteine connectivity in the peptide. The MS/MS spectra of
NextH-Vc7.2 alkylated with two NMM, two NEM, and two
NCM are shown in Fig. S3.

The NextH-Vc7.2 peptide produced mainly y-type ions with
additional (y-NH3) and (y-H2O) fragments. Based on the
MS/MS spectra in Fig. S3, the alkylation pattern was assigned as
C8-NEM/C13-NCM/C17-NMM/C18-NEM/C23-NCM/C28-
NMM. The resulting cysteine connectivity in the peptide
consequently is C8 –C18/C13–C23/C17–C28. Detailed infor-
mation about the identified fragments and three additional
alkylation patterns with identified fragments all supporting the
same cysteine connectivity can be found in Fig. S4 and Tables
S1–S4.

Recombinant H-Vc7.2 elutes with the same retention time as
the native venom peptide, and disulfide bonds are critical for
stability

To investigate whether rH-Vc7.2 (devoid of the four N-ter-
minal nonnative residues) shared the same structural charac-
teristics as the native peptide, we compared retention times of
rH-Vc7.2 and the native peptide from C. victoriae venom by
RP-HPLC. Moreover, the importance of the disulfide bonds for
the stability of the rH-Vc7.2 peptide was investigated by CD
spectroscopy.

The venom fraction that eluted at the same percent of solvent
B as rH-Vc7.2 (24.3–24.7% solvent B) contained a peptide with
the same mass as rH-Vc7.2 (observed [M � H]� � 2785.15;
calculated [M � H]� � 2785.12) demonstrating that rH-Vc7.2
exhibits the same physicochemical properties as the native
venom peptide (Fig. 3, A–C). Adjacent fractions were also sub-
jected to MALDI-TOF MS. A corresponding mass was also
observed in the fraction eluting immediately prior to rH-Vc7.2
(23.9 –24.3% solvent B), but not in any other adjacent fractions.
Future studies may determine whether the peptide with the
same mass as H-Vc7.2 could represent the same peptide with an
alternative fold (e.g. ICK or other) or a proline cis/trans isomer.

We then used CD spectroscopy to characterize further struc-
tural properties of the peptide. CD spectra of rH-Vc7.2 were190 200 210 220 230 240 250
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Figure 3. rH-Vc7.2 elutes with the same retention time as the native
venom peptide and disulfide bonds are critical for stability. A, RP-HPLC
profiles of rH-Vc7.2 peptide (gray line) and C. victoriae venom (black line).
rH-Vc7.2 and venom fractions with the same retention time as rH-Vc7.2 were
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rH-Vc7.2 contained a peptide of identical mass ([M � H]1� � 2785.15) sug-
gesting that the recombinant and native venom peptides have identical
physicochemical properties. D, CD spectra of oxidized and reduced rH-Vc7.2
recorded at 25, 90, and again at 25 °C (after heating to 90 °C), and color-coded
as indicated above the spectra.
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recorded at 25 and 90 °C and (after cooling) again at 25 °C,
under both reducing and nonreducing conditions (Fig. 3D).
The magnitude of the molar residual ellipticity in all spectra
was low, indicating the presence of few regular secondary struc-
ture elements in the peptide. The spectrum of the oxidized
peptide at 25 °C showed two minima, one at 205 nm and the
other at 222 nm. A negative ellipticity minimum around 206 nm
has been observed for small �-sheet and disulfide-rich proteins
(23, 24). The combination of weak negative bands at around 208
and 222 nm is characteristic of both �-helical peptides and pep-
tides with type I �-turns (25). Deconvolution of the CD spec-
trum predicted a protein devoid of �-helix but containing anti-
parallel �-sheets (42.9%), turns (15.8%), and “others” (41.2%)
(Fig. S5). Together, these CD data are consistent with the pres-
ence of �-turns and some �-sheet secondary structure in
rH-Vc7.2 (see below). Upon reduction of the peptide, the CD
spectrum changed considerably, displaying an ellipticity mini-
mum at 198 nm and a shape of the curve suggesting an unstruc-
tured peptide.

To investigate the thermal stability of oxidized rH-Vc7.2, the
change in ellipticity was followed at 224 nm from 10 to 90 °C.
The experiment revealed a linear temperature dependence
(data not shown), demonstrating that rH-Vc7.2 does not unfold
cooperatively over this temperature range. The spectrum
recorded at 90 °C displayed the same overall features as seen at
25 °C with a slightly lower ellipticity in the 205–250-nm range,
indicating that the fold was preserved but that the conforma-
tional ensemble had changed. This change, however, was
reversible upon cooling of the sample to 25 °C. We concluded
that the folded peptide shows strong resistance to thermal
denaturation and that the disulfide bonds are critical to main-
tain the structure of rH-Vc7.2.

NextH-Vc7.2 structure is characterized by two short, stacked
�-hairpins

Having determined the cysteine connectivity and the impor-
tance of disulfide bonds for structural integrity, we used NMR
spectroscopy to investigate the structure of NextH-Vc7.2. Using
homonuclear 2D total correlation spectroscopy (TOCSY) and
2D NOE spectroscopy (NOESY) spectra in combination with
triple resonance backbone spectra, 40% of backbone heavy
atoms, and 60% of the nonexchangeable protons were assigned.
Resonances from 20 out of 27 possible backbone amide groups
were assigned. No peaks in the 15N heteronuclear single quan-
tum coherence spectroscopy (HSQC) spectrum could be
assigned to residues 6 and 7 and 14 –18. The 15N HSQC (Fig.
4B) revealed a large variation in the intensity of observed peaks,
with peaks from unassigned residues likely broadened beyond
detection. Such peak broadening is the result of exchange
between two or more conformations of the molecule on the
millisecond time scale and indicates a dynamic nature of these

Figure 4. NextH-Vc7. 2 structure is characterized by two short, stacked
�-hairpins. A, amino acid sequence of NextH-Vc7.2. The four N-terminal non-
native residues are underlined; disulfide bonds are numbered, and �-strands
are indicated with red arrows. B, 15N HSQC spectrum of NextH-Vc7.2 at differ-
ent temperatures ranging from 5 to 45 °C and color-coded from pink to dark
red as indicated by the color bar. The peaks from assigned backbone amides
are labeled with one-letter code and residue number. Unassigned peaks are
not labeled. Peaks with temperature coefficients higher than �4.6 ppb/K are
labeled in bold. C, lowest energy NMR structure showing the three disulfide

bonds connecting Cys-8 and Cys-18 (1), Cys-13 and Cys-23 (2), and Cys-17 and
Cys-28 (3), and the two �-hairpins. Structural elements are colored with
�-strands in red, sulfur atoms of the six cysteine residues in yellow, and loops
in teal. Positions of the N and C termini are indicated. D, superimposition of
the 20 lowest energy structures. The structures are shown in the same overall
orientation as the conformer in C and with the same color-coding (see also
Table 1).

Granulin fold arising from a common ICK cysteine framework

J. Biol. Chem. (2019) 294(22) 8745–8759 8749

http://www.jbc.org/cgi/content/full/RA119.007491/DC1


regions of the structure. We note that residues 6 and 7 and
residues 17 and 18, which are located in �-strands, are con-
nected by a disulfide bond. If there are dynamics in the struc-
ture on one side of the disulfide bond, the other side likely also
experiences these dynamics.

One process that could cause the proposed peak broadening
would be transient dimer formation (26). We therefore mea-
sured the diffusion coefficient for NextH-Vc7.2 by NMR to
1.96 � 0.08 10�10 m2/s (data not shown). This is only slightly
faster than the theoretical value of 1.54 10�10 m2/s calculated
using HydroPro (27). This result therefore indicates that the
peak broadening is not caused by the formation of dimers or
higher-order oligomers. We also screened pH (in the range of
pH 4.0 – 6.1), temperature (5– 45 °C), and salt concentrations
(up to 150 mM NaCl) to determine whether a single well-or-
dered conformation could be stabilized. However, we did not
observe any large effect on the line shape of the different con-
ditions tested, as exemplified by the temperature series shown
in Fig. 4B.

Despite the missing assignments mentioned above, all H�

(except Gly-1 and Cys-17) and C� shifts (except Phe-15 and
Cys-17) were assigned, and there are TALOS restraints for res-
idues 6 and 7 but not 14 –18. So, NOEs could generally still be
identified in the homonuclear NOESY spectrum, even for res-
idues for which the HSQC peaks were not observed (except for
Cys-17). The structure is thus well-defined even in the regions
where the amide nitrogen is broadened beyond detection.

We calculated a structure of NextH-Vc7.2 using 152 distance
restraints derived from a homonuclear 2D-NOESY spectrum
(pH 6.1, 25 °C), 34 dihedral angle restraints, and the disulfide-
bond restraints (Fig. 4C and Table 1). The structure shows that
the core of the peptide is defined by the three disulfide bonds
and two short, stacked �-hairpins (Fig. 4, C and D). The N-ter-
minal �-hairpin comprises residues 6 –13 and the C-terminal
�-hairpin residues 17–24 (Fig. 4C). The overall fold of the cal-

culated structure remained the same when the disulfide-bond
restraints were omitted in the structure calculations. The five
N-terminal residues (GAMGN) and the four residues at the C
terminus (IDCD) were poorly defined. When excluding these
residues, the backbone heavy atom pairwise root mean square
deviation (RMSD) among the 20 lowest energy structures is
0.4 � 0.2 Å (Fig. 4D and Table 1). The energy statistics from the
final Xplor-NIH structure calculation are shown in Table S5.
NextH-Vc7.2 and rH-Vc7.2 displayed almost identical 2D
NOESY spectra with only minor chemical shift changes for
some protons, strongly indicating that the structure of the two
peptides is the same.

To gain further support for the presence of the two �-hair-
pins, we determined temperature coefficients for the amide
proton chemical shifts (Fig. 5, A and B). Hydrogen-bonded pro-
tons typically have temperature coefficients closer to 0 than
�4.6 ppb/K, whereas nonhydrogen-bonded protons typically
have temperature coefficients lower than �4.6 ppb/K (28, 29).
The temperature coefficients for rH-Vc7.2 were determined by
linear regression using the amide hydrogen chemical shifts
from a series of 15N HSQC spectra measured in the interval
between 5 and 45 °C (Fig. 4B and 5A). Plotting the temperature
coefficients onto the structure revealed that the amide protons
predicted from the calculated structure to be involved in hydro-
gen bonding indeed had temperature coefficients of �4.6
ppb/K or higher (Fig. 5B). We note that although Gly-10 and
Ile-26 are not involved in �-sheet formation, their temperature
coefficients indicate hydrogen bonding. Based on analysis of
the structure, the amide proton of Gly-10 could possibly form a
hydrogen bond with the sulfur atom of Cys-8, whereas the most
likely candidate for hydrogen bonding with the Ile-26 amide
proton is the carbonyl oxygen of Arg-24.

Importantly, the raw NMR data were inconsistent with an
ICK fold, which displays a two-stranded anti-parallel �-sheet
that is often extended with an additional anti-parallel �-strand
(12, 30). Instead, the data substantiated the presence of two
short �-hairpins, the first comprising a type I and the second a
type I� �-turn as determined from the backbone dihedral
angles.

Structural topology of NextH-Vc7.2 is unlike the ICK fold

On the basis of the disulfide framework VI/VII alone, it was
predicted that H-Vc7.2 would have an ICK fold. However, in
NextH-Vc7.2, the connections between �-strands �1, �2, and
�3 and between �2, �3, and �4 are both left-handed in contrast
to the ICK fold, where these connections are left-handed and
right-handed, respectively. Furthermore, the crossing disul-
fides that are a hallmark of the ICK fold (Fig. 6A) are not present
in NextH-Vc7.2 (Fig. 6B). The first disulfide in NextH-Vc7.2
connects �1 with the opposing �3, whereas the second disulfide
connects the opposing �2 and �4. As a result, the first two
disulfides in NextH-Vc7.2 are parallel. The third disulfide con-
nects the beginning of �3 with the unstructured C-terminal
region without threading the loop formed by the first two disul-
fide bonds, another hallmark of the ICK fold. The NextH-Vc7.2
structure therefore unexpectedly displays a fold that is clearly
distinct from an ICK.

Table 1
NMR structural restraints and structure statistics
None of the structures exhibited distance violations �0.3 Å or dihedral angle vio-
lations �5°.

NextH-Vc7.2

Restraints
NOE-based restraints

Intraresidual (�i � j� � 0) 60
Sequential (�i � j� � 1) 49
Medium range (2 � �i � j� �4) 18
Long (�i � j� �5) 25

Total 152
Dihedral angle restraints 34

Restraint statistics
Mean RMSD from experimental restraints

NOE-based distances, Å 0.012 � 0.002
Dihedrals (°) 0.18 � 0.04

Structure statisticsa

Most favored regions 84.1%
Allowed regions 15.2%
Generously allowed regions 0.5%
Disallowed regions 0.2%

Coordinate precision, pairwise RMSD (Å)b

H-Vc7.2 (6–25)
Backbone heavy atoms (N, C�, and C�) 0.43 � 0.23
Heavy atoms 1.37 � 0.29

a PROCHECK was used.
b Molmol was used.
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NextH-Vc7.2 adopts a fold similar to the N-terminal domain of
granulin

Considering the results described above, we searched the
Protein Data Bank (PDB) for structural homologs of NextH-
Vc7.2. The results showed the NextH-Vc7.2 core structure to
have the same fold as the N-terminal domain of the human
progranulin A module (Fig. 7A). Although the second �-hairpin
in the N-terminal domain of the human progranulin A module
is longer than the corresponding �-hairpin in NextH-Vc7.2, the
structures align well and display the same arrangement of disul-
fide bonds. Another conotoxin, 	-MiXXVIIA, with structural
homology to granulin was recently discovered (31). The two
toxins have highly similar structures with the inter-�-hairpin
disulfides placed similarly, whereas the remaining disulfides in

the two toxins are at opposite ends of the peptides (Fig. 7B).
Notably, H-Vc7.2, granulins, and 	-MiXXVIIA are not the
only peptides displaying the observed structure, which we iden-
tified in a number of other proteins. Thus, we found that
domains from other toxins, such as the �D-GeXXa conotoxin
and leech antistasins (serine protease inhibitors), as well as
from the nontoxin proteins follistatin-related protein 3 (and
other proteins with EGF-like domains, e.g. fibrillin) and the
zinc-binding lobe of the E3 ubiquitin ligase, Pirh2, where cys-
teine residues coordinate Zn2� ions rather than forming disul-
fide bonds, have similar folds (Fig. 7, C–F; see under “Discus-
sion”). RMSD values for the structures aligned in Fig. 7, as well
as an alignment of their sequences, are shown in Table S6.

In conclusion, we find that the fold comprising two short,
stacked �-hairpins stabilized by two parallel disulfide bonds
across a small �-sandwich structure is present in a variety of
toxins and other proteins. Given the wide distribution of this
structure, which apparently constitutes an autonomous folding
unit, and its homology with the N-terminal domain of granu-
lins, we propose to name this structure the “mini-granulin”
fold.

Figure 5. Secondary chemical shifts, amide hydrogen temperature coef-
ficients, and �-sheet hydrogen bonds. A, NextH-Vc7.2 H� and C� secondary
chemical shifts and temperature coefficients plotted per residue. Asterisks
mark unassigned residues, and gray bars indicate the position of the four
�-strands as indicated with arrows at the top. The dashed line at �4.6 ppb/K in
the bottom plot indicates the cutoff for hydrogen bonding of amide hydro-
gens. B, residues of the �-hairpins formed by �-strands 1 and 2 (left) and
�-strands 3 and 4 (right) are colored blue (with residue numbers labeled) if the
temperature coefficient is higher than �4.6 ppb/K, red if lower than �4.6
ppb/K, and light gray if unassigned. Backbone atoms are shown with oxygens
in red and hydrogens in gray. Black dashed lines indicate the hydrogen bonds
between the �-strands.
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Figure 6. Structure topology of NextH-Vc7. 2 is unlike the ICK fold. Top and
middle, 3D structures with �-strands, disulfides, and N and C termini labeled in
two different orientations. Bottom, schematic topology representation of the
structures shown above. A, a representative ICK (the SHL-I lectin (PDB code
1QK7) (64)), where “�2” indicates the position of the corresponding second-
ary structural element (�2) in NextH-Vc7.2, which is not present in the ICK. B,
NextH-Vc7.2.
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Investigation of bioactivity

rH-Vc7.2 was tested for bioactivity by intracranial injection
in mice. In this assay, a dose of 3.5 nmol of peptide did not
produce any strong reproducible behavioral changes compared
with control animals injected with saline (data not shown).
Similarly, rH-Vc7.2 (10 �M) did not produce any observable
changes to normal or depolarization-induced intracellular
Ca2� levels in mouse dorsal root ganglion cells (data not
shown).

Discussion

Whereas the same cysteine framework can give rise to differ-
ent cysteine connectivities (32), the finding that the same cys-
teine connectivities can dictate different folds is unusual. This
work therefore emphasizes that caution must be taken in
assuming a specific structure based on a certain cysteine frame-
work, or even a known disulfide pattern. Specifically, we dem-
onstrate that, despite having the disulfide pattern expected of a
peptide with a VI/VII cysteine framework, NextH-Vc7.2 did not
adopt an ICK fold. Rather, the peptide displayed a mini-granu-
lin fold, a structure composed of two short, stacked �-hairpins
connected by two parallel disulfide bonds.

Progranulins are composed of separate disulfide-rich granu-
lin modules of �55 residues each (33). Structurally, each mod-
ule is constituted by stacks (four in most cases) of �-hairpins
interconnected by stabilizing disulfide bonds (Fig. 7A) (34, 35).
The N-terminal region comprising the first �30 residues of the
human progranulin A module is structurally much better
defined than the C-terminal region (33). Indeed, a fragment
comprising residues 1–30 of carp granulin displays essentially
the same structure as the corresponding region of the intact
protein (36). Similarly, an N-terminal 35-residue peptide of a
granulin-like module from a rice protease inhibitor constitutes
a well-defined structure with the expected fold (37), and
designed N-terminal peptides of human (38) and live fluke (39)
granulins also adopt the same overall structure. Thus, it is well-
established that the N-terminal region of several granulins con-
stitutes an autonomous folding unit.

Here, we corroborate and extend the findings for granulin by
identifying a variety of structural homologs of NextH-Vc7.2
where the mini-granulin fold constitutes a separate domain
(Fig. 7). Our analyses show that the recent finding that the
	-MiXXVIIA conotoxin adopts the mini-granulin fold (Fig.
7B) (31) is not a unique case. For instance, the C-terminal
domain of the �D-GeXXa conotoxin, which has not previously
been assigned to a particular fold, also constitutes a mini-
granulin structure (Fig. 7C) (40). A domain with the mini-
granulin fold is also found in the antistasins, i.e. leech serine
protease inhibitors such as antistasin, hirustasin, and bdellasta-
sin (Fig. 7D) (41). Another structural homolog of NextH-Vc7.2
is the EGF-like subdomain of follistatin-related protein 3 (42), a

transforming growth factor � family antagonist (Fig. 7E). Struc-
tural homology between the N-terminal domain of granulin
and the N-terminal subdomain of EGF-like molecules has been
noted previously (36, 43). We also detected homology with the
C-lobe of the N-terminal domain of the E3 ubiquitin ligase
Pirh2, a zinc-binding region of the protein (Fig. 7F) (44), in
which cysteines coordinate zinc atoms located between the
�-hairpins rather than forming disulfide bonds. Overall, the
mini-granulin structure is widely present as a separate domain
in toxins as well as nontoxin proteins.

Although the presence of the mini-granulin fold in nature
may well have been underappreciated to date, ICK peptides are
still much more common (14). Their evolutionary success is
likely a consequence of the high thermodynamic stability and
resistance to proteolytic cleavage afforded by the ICK fold, and
the fact that this fold can function as a scaffold for a vast array of
functionalities (13, 45). In comparison, the core mini-granulin
fold contains only two disulfides and is probably dependent on
the acquisition of additional disulfides, as seen in e.g. H-Vc7.2
and 	-MiXXVIIA, for added structural stability. Although
	-MiXXVIIA has been demonstrated to display (weak) anti-
apoptotic and cell-proliferative activities (31), as is the case for
certain granulin modules, these are unlikely to constitute the
native activities of this conotoxin, and the ability of granulin-
like toxins to harbor different functionalities warrants further
investigation.

Conotoxins and other disulfide-rich toxins have previously
been produced successfully in E. coli using various expression
systems (46, 47). NextH-Vc7.2 and rH-Vc7.2 were produced
using the CyDisCo expression system that supports the forma-
tion of disulfide bonds in the reducing cytosol of E. coli. Based
on our previous finding that the csPDI enzyme accelerates oxi-
dative folding of selected conotoxins in vitro (18), we surmised
that co-expression with csPDI could increase the folding effi-
ciency of at least some conotoxins in this expression system.
Further studies are required to address whether the csPDI–
CyDisCo expression system is widely applicable to the expres-
sion of small disulfide-rich peptides and to investigate a poten-
tial synergism between hPDI and csPDI in disulfide-bond
formation of conotoxins as we recently demonstrated in vitro
for Conus PDI and csPDI (48).

Here, our results showed that when produced in the absence
of the csPDI–CyDisCo system, a large fraction of NextH-Vc7.2
molecules ended up in the insoluble fraction (Fig. S6). A sys-
tematic investigation of the importance of this system for the
production of oxidized NextH-Vc7.2, e.g. the specific effect of
the csPDI as compared with human PDI or a comparison with
other E. coli expression systems such as Shuffle and Origami
cells, was beyond the scope of the current investigation. Ongo-
ing work in our laboratory is aimed at understanding in more

Figure 7. NextH-Vc7. 2 adopts a fold similar to the N-terminal domain of granulin. NextH-Vc7.2 (dark green) is aligned to different structural homologs
(displayed in gray outside the region of structural homology). A, N-terminal domain of the human progranulin A module (dark blue, PDB code 2JYE) (33). B,
	-MIXXVIIA conotoxin (violet) (31). C, C-terminal domain of the �D-GeXXa conotoxin (red, PDB code 4X9Z) (40). The second molecule of the �D-GeXXa dimer
is depicted in light blue. D, N-terminal domain of the leech serine protease inhibitor bdellastasin (orange, PDB code 1C9T) (41). E, N-terminal domain of the
follistatin-related protein 3 (FSTL-3) (yellow, PDB code 2KCX). F, zinc-binding �-hairpin repeat from the C-lobe of the N-terminal domain of Pirh2 (light green,
PDB code 2K2C) (44). Top, alignment with the second and third �-hairpins; bottom, alignment with the first two �-hairpins. Zinc atoms are shown as purple
spheres.
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detail the effects of the csPDI–CyDisCo system on conotoxin
production for a larger and diverse set of toxins.

The function of H-Vc7.2, and indeed all H-superfamily cono-
toxins, remains an open question. In the assays used here, no
obvious bioactivity was detected. Potentially, H-Vc7.2 interacts
with a receptor target in such a way as to not produce observ-
able responses in these assays, or perhaps, the peptide is selec-
tive for one or more receptors not present in the assay systems
used. Future in vivo activity assays using gastropods, the prey of
C. victoriae, may shed light on the peptide’s bioactivity.

From the many available structures of ICK peptides with
large sequence variations in the loops between cysteine resi-
dues, it is clear that the disulfide bonds are crucial for directing
the ICK fold (30). Apart from the side chain of Val-11 that packs
against the first two disulfide bonds, the structure of NextH-
Vc7.2 shows no evidence of a hydrophobic core that could help
direct the folding of the peptide. Instead, as proposed for the
	-MiXXVIIA conotoxin (31), the short loop lengths in
H-Vc7.2 could well restrict the polypeptide conformation to pre-
clude the formation of an ICK fold. An analysis of the more
than 3300 sequences of presumed ICK proteins listed in the
KNOTTIN database (http://www.dsimb.inserm.fr/KNOTTIN/6

(13)) supports this suggestion. Among these many sequences,
only 10 contain four (or fewer) residues in the loop between
CysI and CysII, three (or fewer) residues between CysII and
CysIII, and no residues between CysIII and CysIV. No structures
have been solved for any of these 10 proteins. Only when the
loop length between CysIII and CysIV reaches three residues
(while retaining �4 and �3 residues in the first two loops,
respectively) have ICK structures been solved. However, a more
thorough analysis of the consequences of varying loop lengths
in cysteine framework VI/VII proteins is needed to determine
the underlying features of the H-Vc7.2 sequence that govern its
structure and lead to the formation of the mini-granulin fold
rather than the ICK fold. Such work will be fundamental to
allow the design of better structure prediction algorithms and
help further our understanding of sequence–structure rela-
tionships in peptides and proteins.

Experimental procedures

Mass spectrometry (MS) on venom extract

C. victoriae snails were collected from Broome, Western
Australia, under a commercial fishing license of the Western
Australian Specimen Shell Managed Fishery (license number
2577). The venom was obtained by manual extrusion from
freshly dissected venom glands. An aliquot (0.5 �g) of venom
was reduced in 20 mM tris(2-carboxyethyl)phosphine (TCEP),
pH 8, for 30 min at 60 °C, then alkylated by incubating in 40 mM

iodoacetamide for 30 min. This reduced and alkylated venom
was loaded onto a microfluidic trap column packed with
ChromXP C18-CL 3-�m particles (300 Å nominal pore size).
An analytical (15-cm 
 75-�m ChromXP C18-CL 3-�m)
microfluidic column was then switched in line, and venom was
separated using a linear gradient of 0 – 80% acetonitrile, 0.1%

formic acid over 90 min at a flow rate of 300 nl/min. Separated
venom peptides were analyzed using an AB SCIEX 5600 Trip-
leTOF mass spectrometer equipped with a Nanospray III ion
source and accumulating 30 tandem MS (MS/MS) spectra/s.
MS/MS data were analyzed with ProteinPilot software (version
Beta 4.1.46) using the Paragon algorithm. The search databases
comprised a six-frame translation of the C. victoriae venom
gland transcriptome, as described previously (10), including the
translated prepropeptide sequence of H-Vc7.2. MS/MS
spectra identified by ProteinPilot as matching peptides were
manually validated by comparison against a theoretical peak
list (Protein Prospector MS-Product, University of Califor-
nia, San Francisco).

Plasmid generation

Based on the nucleotide sequence of H-Vc7.2 from C. victo-
riae (10), an E. coli codon-optimized H-Vc7.2 gene containing
NcoI and BamHI restriction sites was synthesized (Eurofins
Genomics GmbH) and cloned into the pET39_Ub19 plasmid
(20) (a kind gift from V. Rogov and V. Dötsch, Goethe Univer-
sity, Frankfurt, Germany). The resulting plasmid expressing
ubiquitin (Ub)–His10-tagged, N-terminally extended H-Vc7.2
(Ub–His10–NextH-Vc7.2) is referred to as pLE566. A plasmid
(pLE879) differing only from pLE566 by encoding the native
sequence devoid of the four non-native residues in NextH-Vc7.2
was purchased from TWIST Bioscience. The fusion protein
produced from pLE879 was named Ub–His10–rH-Vc7.2.

A CyDisCo plasmid (pMJS205 (17)) encoding Erv1p and
hPDI was a gift from L. W. Ruddock (Dept. of Biochemistry,
University of Oulu, Finland). A codon-optimized sequence for
E. coli expression of csPDIGH/GH from C. geographus (Gen-
BankTM accession no. KT874567) (18) was synthesized with
XbaI and XhoI restriction sites (Eurofins Genomics GmbH)
and cloned into pMJS205, generating the pLE577 plasmid that
encodes Erv1p, hPDI, and csPDIGH/GH (see Fig. 2).

Protein expression

Chemically competent E. coli BL21 Tuner(DE3) cells (Nova-
gen) were co-transformed with pLE577 and pLE566 or pLE879
and plated on an LB agar plate containing kanamycin (50
�g/ml) and chloramphenicol (30 �g/ml). One colony was inoc-
ulated in LB medium containing the same antibiotics and incu-
bated overnight at 37 °C at 200 rpm in an orbital shaker. Over-
night cultures were diluted in LB or M9 media (3 g/liter
KH2PO4, 15.1 g/liter Na2HPO4 12H2O, 5 g/liter NaCl, 1 mM

MgSO4, 1 ml/liter M2 Trace element solution (203 g/liter
MgCl2 6H2O, 2.1 g/liter CaCl2 2H2O, 2.7 g/liter FeSO4 7H2O,
20 mg/liter AlCl3 6H2O, 10 mg/liter CoSO4 7H2O, 2 mg/liter
KCr(SO4)2 12H2O, 2 mg/liter CuCl2 2H2O, 1 mg/liter H3BO4,
20 mg/liter KI, 20 mg/liter MnSO4 H2O, 1 mg/liter NiSO4
6H2O, 4 mg/liter Na2MoO4 2H2O, 4 mg/liter ZnSO4 7H2O, 21
g/liter citric acid monohydrate), 1 g/liter [15N]NH4Cl, and 4
g/liter [13C]glucose) to an optical density at 600 nm (OD600) of
0.1 and incubated at 37 °C until OD600 reached �0.8. Protein
expression was induced by 1 mM IPTG, and cultures were
grown overnight at 30 °C. Expression of the 13C/15N-labeled
peptide in 580 ml of M9 minimal medium was performed as
described for the unlabeled peptide.

6 Please note that the JBC is not responsible for the long-term archiving and
maintenance of this site or any other third party hosted site.

Granulin fold arising from a common ICK cysteine framework

8754 J. Biol. Chem. (2019) 294(22) 8745–8759

http://www.dsimb.inserm.fr/KNOTTIN/


Cell harvest

Induced overnight cultures were centrifuged for 15 min at
6,000 
 g; supernatants were discarded, and pellets were resus-
pended in 10 ml of lysis buffer (300 mM NaCl, 50 mM Na2HPO4/
NaH2PO4, 10 mM imidazole, pH 8)/liter of culture medium.
Sonication was performed on a Bandelin Sonopuls HD2200
equipped with a Boosterhorn SH 213 G and a 3 mm probe. Cells
were sonicated 10
 for 10 s at 30% power with 30 s on ice
between pulses. After centrifugation for 50 min at 15,000 
 g,
the cleared lysates were transferred to fresh tubes, while pellets
were dissolved in lysis buffer containing 8 M urea for SDS-PAGE
analysis.

Protein purification

Ub–His10–NextH-Vc7.2 was purified from the cleared lysate
on an ÄKTA purifier 900 chromatography system equipped
with a GE Healthcare Tricorn 10/50 column packed with 5 ml
of Qiagen Superflow Ni-NTA resin equilibrated in lysis buffer.
Upon sample application, the column was washed with lysis
buffer containing 20 mM imidazole until a stable baseline at
A280 was achieved, and the protein was eluted with lysis buffer
containing 400 mM imidazole. The pooled material (7 ml) was
dialyzed twice against 2 liters of lysis buffer at 4 °C using Spec-
tra/Por 1 dialysis tubing with a molecular mass cutoff of 6,000 –
8,000 Da (Spectrum Laboratories Inc.). The dialyzed sample
was concentrated to �500 �l using Amicon Ultra 15-ml 3K
centrifugal filters (Merck Millipore) according to the manufa-
cturer’s instructions.

Ni-NTA–purified Ub–His10–NextH-Vc7.2 was cleaved
using His6–TEV protease (obtained as described below), which
was activated by incubation with 10 mM dithiothreitol (DTT)
for 30 min. To avoid reduction of disulfide bonds in the target
fusion protein, DTT was diluted to 0.2 mM in the TEV solution
by two rounds of dilution and concentration on an Amicon
Ultra 15-ml 3K centrifugal filter. TEV cleavage was carried out
in lysis buffer at room temperature overnight in a final concen-
tration of 0.08 mM DTT. A Ub–His10–NextH-Vc7.2/His6–TEV
molar ratio of 100:1 was used. To remove any uncleaved
Ub–His10–NextH-Vc7.2, liberated Ub–His10 and His6–TEV,
�500 �l of 80% slurry of Talon Superflow Metal Affinity Resin
(Clontech) equilibrated with lysis buffer was added to the TEV-
cleaved sample, and the mixture was incubated overnight at
4 °C on a rotating mixer. Talon beads were removed by centrif-
ugation, and the supernatant was subjected to RP-HPLC. Trif-
luoroacetic acid (TFA) was added to 0.1%; pH was adjusted to
�2 with 1 M HCl, and samples were spun at 16,100 
 g for 10
min. RP-HPLC purification was performed on an ÄKTA puri-
fier 900 chromatography system equipped with a Grace Vydac
218 TP C18 column (4.6 
 150 mm, 5 �m) using solvent A: 5%
ethanol, 0.1% TFA, and solvent B: 90% ethanol, 0.085% TFA.
The 0 – 60% solvent B gradient was developed over 60 min with
a flow rate of 1 ml/min. Following purification, peptide-con-
taining fractions from the major peak were pooled and lyophi-
lized. RP-HPLCs (and plots of molar ellipticity; see below) were
visualized in MATLAB (MathWorks�). Ub–His10–rH-Vc7.2
was purified using the same procedure.

His6–TEV protease expression and purification

An expression plasmid (pLE478) encoding maltose-binding
protein (MBP) and His6-tagged TEV protease (MBP–His6–
TEV) (20) was a gift from V. Rogov and V. Dötsch (Goethe
University, Frankfurt, Germany). Upon expression, the fusion
protein undergoes autocleavage to release TEV protease with
an N-terminal His-tag (His6–TEV). Chemically competent
BL21(DE3) cells (Invitrogen) were transformed with pLE478
and plated on an LB agar plate containing 100 �g/ml ampicillin.
One colony was inoculated in 10 ml of LB medium containing
100 �g/ml ampicillin and grown overnight at 37 °C in an orbital
shaker (200 rpm). The overnight culture was diluted to OD600
of 0.1 and incubated at 37 °C in an orbital shaker until the
OD600 reached �1.0. Subsequently, IPTG was added to the cul-
ture to a concentration of 1 mM and incubated at 20 °C over-
night. The His6–TEV protease was purified from overnight cul-
tures essentially as the Ub–His10–NextH-Vc7.2 construct, but
using different lysis buffer (50 mM Tris, 200 mM NaCl, 1% glyc-
erol, 10 mM imidazole, pH 7.8), Ni-NTA– binding buffer (50
mM Tris, 200 mM NaCl, 20 mM imidazole, pH 7.8), elution
buffer (50 mM Tris, 200 mM NaCl, 300 mM imidazole, pH 7.8),
and dialysis buffer (50 mM Tris-HCl, 100 mM NaCl, pH 7.8). The
concentration of dialyzed His6–TEV protease was calculated
based on the A280 value and an extinction coefficient, �280, of
32,290 M�1 cm�1. Purified His6–TEV protease was stored in
dialysis buffer containing 5 mM DTT and 50% glycerol at
�80 °C.

Concentration determination

As the H-Vc7.2 sequence contains no Trp or Tyr residues,
the concentrations of NextH-Vc7.2 and rH-Vc7.2 were deter-
mined by measuring absorbance at 214 nm and using the
extinction coefficient 34,621 M�1 cm�1 calculated as reported
previously (49).

Confirmation of peptide oxidation state

The oxidation status of purified NextH-Vc7.2 was evaluated
by MALDI-TOF MS using an Autoflex Smartbeam III instru-
ment (Bruker) calibrated by external calibration (Peptide cali-
bration standard I; Bruker Daltronics). Lyophilized rH-Vc7.2
was dissolved in 20 �l of 20 mM Tris, pH 8.0, containing 6 M

guanidinium hydrochloride and incubated 2 h at 37 °C in the
presence or absence of 50 mM TCEP. Subsequently, 100 mM

iodoacetamide was added and samples were incubated for 2 h at
room temperature in the dark to allow for S-carbamidometh-
ylation of free thiols. For MS analysis, the samples were acidi-
fied by the addition of TFA and desalted by reversed-phase
chromatography using Poros R1 microcolumns as described
previously (50). The recovered samples were mixed with
�-cyano-4-hydroxycinnamic acid prepared in 70% acetonitrile,
0.1% TFA, spotted on a stainless-steel target plate, and analyzed
in positive reflectron mode. The generated data were evaluated
using the GPMAW software and monoisotopic masses.

MS confirmation of csPDI and hPDI expression

Lysates from IPTG-induced E. coli cells were separated by
reducing SDS-PAGE, and in-gel digestion was performed using
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porcine trypsin (Promega). Generated peptides were recovered
by reversed-phase chromatography (StageTips, C18, Thermo
Fisher Scientific) and eluted directly onto the target plate using
�-cyano-4-hydroxycinnamic acid as described above. Peptides
were analyzed in positive reflector mode, annotated, and inter-
rogated by peptide mass fingerprinting using the MASCOT
search engine (51). Cysteine propionamide was set as a fixed
modification, due to the reaction of protein cysteine residues
with acrylamide present in the gel support during electropho-
resis. Oxidation of methionine residues was set as a variable
modification. One missed cleavage was allowed, and the pep-
tide mass tolerance was set to 50 ppm. Identifications were
validated by LIFT analysis on selected peptides.

Determination of cysteine connectivity

The cysteine connectivity in NextH-Vc7.2 was determined
following the method of Albert et al. (22). In brief, 5 nmol of the
peptide were sequentially reduced with 500 mM TCEP and alky-
lated at pH 3.0 on an Empore C18 solid-phase extraction car-
tridge (3M, St. Paul, MN). For sequential alkylation, the
maleimides NMM, NEM, and NCM were used (at 20 mM).
Therefore, in each reduction/alkylation step one maleimide
alkylated both cysteines of one disulfide bridge. The fully alky-
lated peptide was analyzed by LC tandem MS. In detail, the
peptide was run on an ACQUITY BEH C18 UPLC column
(1.0 
 150 mm, 1.7 �m) installed in an ACQUITY UPLC
I-Class system (Waters) and coupled to a Xevo G2 Q-TOF mass
spectrometer (Waters). Different alkylation patterns and sub-
sequently the disulfide connectivity of the peptide were identi-
fied from characteristic combinations of y-type ions from
obtained mass spectra.

RP-HPLC elution experiments with rH-Vc7.2 and C. victoriae
venom

Approximately 1 nmol of rH-Vc7.2 was analyzed by
RP-HPLC on an analytical C18 column (5-�m particle size,
4.6 
 250 mm, Vydac) using a gradient of 15– 45% solvent B
(90% acetonitrile, 0.1% TFA) over 30 min. The HPLC column
was repeatedly washed with 5–100% solvent B to ensure that no
more recombinant peptide was bound to the column prior to
venom analysis.

Venom was extruded from a single frozen venom duct of
C. victoriae and extracted in 400 �l of 40% acetonitrile, 0.1%
TFA with a disposable plastic pestle. The mixture was centri-
fuged for 5 min at 10,000 
 g to remove insoluble material. A
10-�l aliquot of the supernatant was diluted in 0.1% TFA, water
and analyzed by RP-HPLC using the same conditions described
above. Fractions eluting at similar % of solvent B as rH-Vc7.2
were collected in 0.25% B intervals for subsequent mass spec-
trometric analysis.

Fractions were lyophilized and submitted to the Proteomics
Core Facility at the University of Utah. MALDI-TOF MS anal-
ysis was performed on rH-Vc7.2 and venom fractions eluting at
a similar percent of solvent B. MALDI-MS measurements were
performed on a Bruker Daltonics UltrafleXtreme ToF mass
spectrometer in positive ion reflectron mode using pulsed ion
extraction set at 100 ns. The instrument was calibrated using
polyalanine, and samples were analyzed by averaging �500 sin-

gle-shot spectra. Data were analyzed using flexAnalysis 1.4
(Bruker).

CD spectroscopy

CD spectroscopy of oxidized and reduced rH-Vc7.2 (40 �M

in 10 mM KH2PO4/K2HPO4, pH 6.1, in the absence of TCEP or
25 mM NaH2PO4/Na2HPO4, pH 6.1, in the presence of 5 mM

TCEP) was carried out using a JASCO J-810 spectropolarime-
ter. The fully reduced sample was prepared by incubating
rH-Vc7.2 overnight with 10 mM DTT and 10 mM TCEP before
purification by RP-HPLC. The lyophilized sample was dis-
solved in H2O for concentration determination before dilution
into phosphate buffer. For thermostability assays, ellipticity at
224 nm was recorded from 10 to 90 °C at a rate of 1 °C/min
followed by cooling to 5 °C. CD spectra were recorded at 25 °C
in the wavelength range of 190 –250 nm before and after heat-
ing. The final spectra were obtained after averaging over 15
spectra recorded at a scan rate of 10 nm/min, and baseline
(buffer only, same conditions) was subtracted. High-frequency
noise was removed using a Fourier transformation filter. The
region from 190 to 200 nm was omitted due to a high-tension
voltage value exceeding 600 Hz in the presence of TCEP.

NMR spectroscopy

Samples of �1 mM of both unlabeled and 13C,15N-labeled
NextH-Vc7.2 were prepared in 25 mM sodium phosphate, 10%
D2O, pH 6.1. Chemical shifts were assigned by standard
sequential assignment based on the following recorded spectra:
2D 1H-1H-TOCSY and 2D 1H-1H-NOESY (on the unlabeled
sample), and 15N HSQC, 13C HSQC, HNCA, HNCO,
HNCOCA, HNCACO, and CBCACONH (on the double-la-
beled sample). All spectra were recorded at 25 °C on Bruker
Avance III-HD NMR spectrometers operating at 750 and 600
MHz, equipped with TCl and QCl cryoprobes, respectively.
The data were processed with nmrPipe (52) and analyzed in
CCPNMR (53).

NMR structure calculations

CYANA was used for automated NOE assignment of the 2D
1H-1H NOESY spectrum and initial structure calculation, also
including dihedral angles calculated with TALOS� (54) and
the disulfide pattern (C8 –C18/C13–C23/C17–C28, deter-
mined as described above) as restraints (55). The final structure
refinement was done using XPLOR-NIH with the NOE-derived
distance restraints, dihedral angle restraints, and disulfide bond
restraints (56). The 20 lowest energy structures out of 100 were
selected and contained no NOE violations (�0.3Å) or dihedral
angle violations �5°. Ramachandran-plot statistics were calcu-
lated using PROCHECK (57). Structure alignment was done
using MOLMOL (58), and structure visualization was per-
formed with PyMOL (DeLano Scientific). The structure has
been deposited in the PDB (59) with PDB code 6Q5Z and chem-
ical shifts and chemical shifts have been deposited in the Bio-
logical Magnetic Resonance Bank (http://www.bmrb.wisc.edu/
(60)) with ID 34335.

Identification of structural homologs

To identify structural homologs of NextH-Vc7.2, we first
downloaded all structures in the PDB, and the sequences from

Granulin fold arising from a common ICK cysteine framework

8756 J. Biol. Chem. (2019) 294(22) 8745–8759

http://www.bmrb.wisc.edu/


the structure files were extracted using an in-house automated
Matlab script. The extracted sequences were then searched
with a CX1–5CX1–5CX0 –2C sequence motif (where X denotes
any residue), representing a fragment of the H-Vc7.2 sequence
covering the first four cysteine residues. All structures contain-
ing a sequence matching this motif were inspected in PyMOL.
Structures containing a fold homologous to that of NextH-
Vc7.2 were aligned to the NextH-Vc7.2 structure using the
CLICK alignment server (61, 62).

Mouse bioassay and calcium imaging

All experiments involving the use of animals were approved
by the Institutional Animal Care and Use Committee of the
University of Utah. Swiss Webster mice (14 –21 days old) were
injected intracranially with 3.5 nmol of rH-Vc7.2 peptide (dis-
solved in 25 mM NaHPO4 buffer, pH 6.1, containing 10% D2O,
0.25 mM 4,4-dimethyl-4-silapentane-1-sulfonic acid, 0.02%
NaN3). Following intracranial injection, mouse behavior was
observed for 1 h to determine differences between treated and
control animals. Calcium imaging on mouse lumbar dorsal root
ganglion neurons, using 10 �M peptide, was carried out as
described previously (63).
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